信息发布→ 登录 注册 退出

numpy中np.nanmax和np.max的区别及坑

发布时间:2026-01-11

点击量:
目录
  • np.nanmax和np.array([1,2,3,np.nan]).max()的区别
    • 原理
    • 速度区别
  • numpy中nan和常用方法

    np.nanmax和np.array([1,2,3,np.nan]).max()的区别

    numpy中numpy.nanmax的官方文档

    原理

    在计算dataframe最大值时,最先用到的一定是Series对象的max()方法(),最终结果是4。

    s1 = pd.Series([1,2,3,4,np.nan])
    s1_max = s1.max()

    但是笔者由于数据量巨大,列数较多,于是为了加快计算速度,采用numpy进行最大值的计算,但正如以下代码,最终结果得到的是nan,而非4。发现,采用这种方式计算最大值,nan也会包含进去,并最终结果为nan。

    s1 = pd.Series([1,2,3,4,np.nan])
    s1_max = s1.values.max()
    >>>nan

    通过阅读numpy的文档发现,存在np.nanmax的函数,可以将np.nan排除进行最大值的计算,并得到想要的正确结果。

    当然不止是max,min 、std、mean 均会存在列中含有np.nan时,s1.values.min /std/mean ()返回nan的情况。

    速度区别

    速度由快到慢依次:

    s1 = pd.Series([1,2,3,4,5,np.nan])
    #速度由快至慢
    np.nanmax(s1.values) > np.nanmax(s1) > s1.max() 

    numpy中nan和常用方法

    #!/usr/bin/env python
    # -*- coding:utf-8 -*- 
    # Author: Jia ShiLin
     
    import numpy as np
     
    a = np.arange(9, dtype=float).reshape(3, 3)
    a[[[1], [2]]] = np.nan
    print(a)
    # isnan函数
    print(np.isnan(a))
    a[np.isnan(a)] = 0  # 把nan替换成中值或者均值
    print(a)
     
    print(np.count_nonzero(a))
     
    # sum()统计求和
    b = np.arange(12, dtype=int).reshape(2, 6)
    print(b)
    print(np.sum(b, axis=0))  # 得到结果和行的形状一样
    print(np.sum(b, axis=1))
    # .mean()
    print(b.mean())
    print(b.mean(axis=0))
    print(b.mean(axis=1))
    # np.median()中位数
    print(np.median(b, axis=0))
    # .min() .max()
    # .ptp()机值
    print(np.ptp(b))
    # .std()标注差
    print(np.std(b, axis=0))

    以上为个人经验,希望能给大家一个参考,也希望大家多多支持。

    在线客服
    服务热线

    服务热线

    4008888355

    微信咨询
    二维码
    返回顶部
    ×二维码

    截屏,微信识别二维码

    打开微信

    微信号已复制,请打开微信添加咨询详情!