信息发布→ 登录 注册 退出

Python数据处理之pd.Series()函数的基本使用

发布时间:2026-01-11

点击量:
目录
  • 1.Series介绍
  • 2.Series创建
    • 1.pd.Series([list],index=[list])
    • 2.pd.Series(np.arange())
  • 3 Series基本属性
    • 4 索引
      • 5 计算、描述性统计
        • 6 排序
          • 总结

            1.Series介绍

            Pandas模块的数据结构主要有两种:1.Series 2.DataFrame

            Series 是一维数组,基于Numpy的ndarray 结构

            Series([data, index, dtype, name, copy, …])    
            # One-dimensional ndarray with axis labels (including time series).
            

            2.Series创建

            import Pandas as pd 
            import numpy as np
            

            1.pd.Series([list],index=[list])

            参数为list ,index为可选参数,若不填写则默认为index从0开始

            obj = pd.Series([4, 7, -5, 3, 7, np.nan])
            obj
            

            输出结果为:

            0    4.0
            1    7.0
            2   -5.0
            3    3.0
            4    7.0
            5    NaN
            dtype: float64

            2.pd.Series(np.arange())

            arr = np.arange(6)
            s = pd.Series(arr)
            s
            

            输出结果为:

            0    0
            1    1
            2    2
            3    3
            4    4
            5    5
            dtype: int32

            pd.Series({dict})
            d = {'a':10,'b':20,'c':30,'d':40,'e':50}
            s = pd.Series(d)
            s
            

            输出结果为:

            a    10
            b    20
            c    30
            d    40
            e    50
            dtype: int64

            可以通过DataFrame中某一行或者某一列创建序列

            3 Series基本属性

            • Series.values:Return Series as ndarray or ndarray-like depending on the dtype
            obj.values
            # array([ 4.,  7., -5.,  3.,  7., nan])
            
            • Series.index:The index (axis labels) of the Series.
            obj.index
            # RangeIndex(start=0, stop=6, step=1)
            
            • Series.name:Return name of the Series.

            4 索引

            • Series.loc:Access a group of rows and columns by label(s) or a boolean array.
            • Series.iloc:Purely integer-location based indexing for selection by position.

            5 计算、描述性统计

             Series.value_counts:Return a Series containing counts of unique values.

            index = ['Bob', 'Steve', 'Jeff', 'Ryan', 'Jeff', 'Ryan'] 
            obj = pd.Series([4, 7, -5, 3, 7, np.nan],index = index)
            obj.value_counts()
            

            输出结果为:

             7.0    2
             3.0    1
            -5.0    1
             4.0    1
            dtype: int64

            6 排序

            Series.sort_values

            Series.sort_values(self, axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last')
            

            Parameters:

            ParametersDescription
            axis{0 or ‘index’}, default 0,Axis to direct sorting. The value ‘index’ is accepted for compatibility with DataFrame.sort_values.
            ascendinbool, default True,If True, sort values in ascending order, otherwise descending.
            inplacebool, default FalseIf True, perform operation in-place.
            kind{‘quicksort’, ‘mergesort’ or ‘heapsort’}, default ‘quicksort’Choice of sorting algorithm. See also numpy.sort() for more information. ‘mergesort’ is the only stable algorithm.
            na_position{‘first’ or ‘last’}, default ‘last’,Argument ‘first’ puts NaNs at the beginning, ‘last’ puts NaNs at the end.

            Returns:

            Series:Series ordered by values.

            obj.sort_values()
            

            输出结果为:

            Jeff    -5.0
            Ryan     3.0
            Bob      4.0
            Steve    7.0
            Jeff     7.0
            Ryan     NaN
            dtype: float64

            • Series.rank
            Series.rank(self, axis=0, method='average', numeric_only=None, na_option='keep', ascending=True, pct=False)[source]
            

            Parameters:

            ParametersDescription
            axis{0 or ‘index’, 1 or ‘columns’}, default 0Index to direct ranking.
            method{‘average’, ‘min’, ‘max’, ‘first’, ‘dense’}, default ‘average’How to rank the group of records that have the same value (i.e. ties): average, average rank of the group; min: lowest rank in the group; max: highest rank in the group; first: ranks assigned in order they appear in the array; dense: like ‘min’, but rank always increases by 1,between groups
            numeric_onlybool, optional,For DataFrame objects, rank only numeric columns if set to True.
            na_option{‘keep’, ‘top’, ‘bottom’}, default ‘keep’, How to rank NaN values:;keep: assign NaN rank to NaN values; top: assign smallest rank to NaN values if ascending; bottom: assign highest rank to NaN values if ascending
            ascendingbool, default True Whether or not the elements should be ranked in ascending order.
            pctbool, default False Whether or not to display the returned rankings in percentile form.

            Returns:

            same type as caller :Return a Series or DataFrame with data ranks as values.

            # obj.rank()            #从大到小排,NaN还是NaN
            obj.rank(method='dense')  
            # obj.rank(method='min')
            # obj.rank(method='max')
            # obj.rank(method='first')
            # obj.rank(method='dense')
            

            输出结果为:

            Bob      3.0
            Steve    4.0
            Jeff     1.0
            Ryan     2.0
            Jeff     4.0
            Ryan     NaN
            dtype: float64

            总结

            标签:# depending  # integer  # label  # columns  # boolean  # Purely  # iloc  # arr  # dict  # NaN  # values  # array  # python中pd.series  # Return  # 默认为  # 大到  # 若不  # 有两种  # 可选  # 可以通过  # 数据结构  # python中pd.Series()函数的使用  # python pandas series  # pd.series函数用法  
            在线客服
            服务热线

            服务热线

            4008888355

            微信咨询
            二维码
            返回顶部
            ×二维码

            截屏,微信识别二维码

            打开微信

            微信号已复制,请打开微信添加咨询详情!